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1 Introduction

Hardness ratios are often used in situations where therenoiaye enough counts or
spectral resolution to model the spectrum of a source usiagraditional forward-
folding[Davis(2001)] methodology. In such a case, a diatfermed from the ratio of
the counts in one band to another band can serve as a crudetehenation of the spec-
trum. In the low counts regime where this technique might $edy this statistic suf-
fers from significant statistical fluctuations forcing ooecbnsider its confidence lim-
its derived from the statistics underlying probabilitytdisution. The computation of
confidence limits for hardness ratios has been addressethbssq[Park et al.(2006),
Jin et al.(2006)]) using Bayesian techniques. The preserk wresents a simple ex-
tension of the work by previous authors to a more generasa&Binctions. Although
a Bayesian approach was adopted no prior knowledge of Bayetatistics is assumed
on the part of the reader.

2 Definitions

Let C'y denote the number of counts in a “hard” energy band extrobed a spatial
region(), and letCs denote the counts extracted from a “soft” band. It is assumed
that the bands are non-overlapping and that the same egtraegion{2, was used

for both bands. The counts in each of these bands will conbisbth source counts
and background counts. Lgt; denote the expected numbef source counts in the

1The “expected number” is a statistical quantity whose vidumt restricted to integers. More precisely,
it refers to the expectation value of the of the number of e®writh respect to their underlying probability
distribution.



hard band for this region. The expected number of hard-baokigsound counts in the
region may be estimated from the number of counts extraobed & source-free region
Q. Letvy denote the expected number of counts in the hard-band obtireesfree
region, and letay be a scaling factor such that the expected number of hard-ban
background counts in the source regiomisry. Hence,uyg + avy is the expected
number of counts in the regidi, for the hard-band. Analogous quantitjes, vs, and

ag, may be defined for the soft-band. In the following, the séaétorsay andag

are assumed to be specified constants, and may be thoughtef ragio of the source

to background effective areas for the corresponding bands.

Following [Park et al.(2006)], the so-called “hardnesraf? is defined by

R="11 (1)
Hs

In addition toR, [Park et al.(2006)] considered two other functional forohs?: the

fractional difference
R—-1 @)
R+1

and the so-called “color” given blpg,,(R). In the present work, an arbitrary mono-
tonic function ofR is considered, i.e.,

H=[f(R). 3)

Such a more generic form will allow a hardness-ratio of thetfo
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where, e.g.as represents the average effective area for the soft-bandiapds is
representative of the flux in the band.

Given theobserved countsCy, By, Cg, and Bg, the goal is to derive a probability
distribution for#, and from that its confidence limits may be obtained.

3 Bayes Theorem

Assuming that the source and background counts are Poigstabuted, the probabil-
ity P(C|u) of obtainingC' counts whenu are expected is given by

C

P(Clu) = e, (5)



Note that the observed number of countds integer-valued, whereas the expected
numbery is a real-valued quantity. The probabiliB(C|u) should not be interpreted
as the probability density for the expected number of countgven the observed
numberC. The latter quantity is denoted & 1|C), and may be found as follows:
Thejoint probability for obtaining exactly” countsand for the expected number of
counts to lie betweemn and i + du is denoted asP(u, C)du. It is related to the
conditional probabilities via

P(u,C) =P(ulC)P(C) =P(C|lp)P(n). (6)
From the above it follows that
Pluic) = QR o pclP (), )

which is known as Bayes’ Theorem. By itself, it is not teryilbiseful without speci-
fying a value forP(u). Note thatP(u) is related to the joint probability distribution

via
Plp) =Y _P(uC). (8)
C

This is also an empty statement without knowing anythingualoe joint distribu-
tion. Hence, methodologies utilizing Bayes’s Theorem nexisome prior knowledge
of P(u), and for this reason statisticians calls refefq.) as simply theprior. For
now, P(u) will simply be regarded as a function to be specified later.

4  Probability Distribution for the Hardness Ratio

The probability density fo#{ given the observed counts is given by

P = [ " dun / " dus Pu|Cor. Br)Pus|Cs, Bs)S(H — F(M1)) ()
0 0 Hs

Note that the delta function constrains the ratig/us to a fixed valueR satisfying
H = f(R). Sincef(R) is assumed to be monotonic, the delta function may be written
in the form

by O(pm — )
o f(us))f 0f /Opnl (19)

wherep?, = usf~1(H) = Rus anddf/0um = f'(R)/ns. Substituting this expres-
sion for the delta function into equation (9) and integrgiiver . ;; yields

P(H) = ﬁ /0 " dus usP(Bus|Car, B )P(us|Cs. Bs).  (11)

The probabilitiesP (1 |Crr, Br) andP(us|Cs, Bs) may be obtained as follows. For
clarity, consider one of the bands, say the soft band, anpl it subscript denoting



the band. Then the joint probabili®(u, v, C, B) may be factored as both
P(u.v,C, B) = P(u,v|C, BYP(C. B) (12)
and
P(p,v,C, B) = P(Clp, v, B)P(u, v, B). (13)

The fact thatB andC were extracted from independent regions, means that tiie val
of C' cannot depend upoR, nor can the expected number of source courdepend
uponB. Hence,

P(C|Ma VvB) ZP(C|H7V) (14)

and

P(p,v, B) = P(u)P(v, B)
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From these expressions it follows that

_ P(Clp,v)P(Blv)P(r)P(v)
P(p,v|C, B) = C1P(B) , (16)
and
P(u|C,B) = /OO dvP(u,v|C, B)

0 17)

xP(n) / " v P(Cly ) P(BI)PW),

where the proportionality constant depends ugband B, and may be obtained by
demanding thaP (u|C, B) is normalized according to

1:/0 du P(u|C, B). (18)

From the assumption of Poisson statistics,

c
POl ) = LA mtpow) (19
and
Z/B
P(Blv) = Ee_”. (20)

From these expressions, it follows that

P(u)e*

/ dv P(v)(u + av)CvBe ety
0
c cC (22)

M — C Q\j 1 > B+j ,—(a+1)v
o AT HP(M); (])(;) E/o dv P(v)v="e :



where

(?) N ﬁ (22)

denotes the binomial coefficient. The above may be expraasadlightly simpler
form as

P(1IC, B) o< P()ie “Z< > )L g,O‘), (23)

where -
I;(B,a) = / dv P(v)pBHie=(atly, (24)
0

In order to computd,; (B, «), the probability distributior?(v) must be specified. In
the absence of any prior knowledge of this function, theateduniform prior, which
assumes tha®(v) is independent of is usually adopted. This choice produces

N
Li(B,a) = % (uniform prior) (25)
Alternatively, a specific parameterization®Bfv) such as’e~** could be used. The
use of this particular form has the effect of shiftiBgto B’ = B + m, anda to o/ =
a+A. This parameterization @ (v) also has the property that sinBéB|v) is Poisson
distributed, ther?(v| B) computed via equation (7) also has the same functional form
asP(v). Statisticians use the terconjugate prior for parameterizations that have this
property. Hence,

T(B +j+1)

L(Bye) = G oy

(conjugate prior) (26)

As an example of the a conjugate prior, suppose that an imdiep¢ measurement of
the Poisson-distributed background yieldBd counts. Using this measurement and
Bayes'’s Theorem with a uniform prior, it is easy to show that

B
P(B1) = Fye ™, (27)

which has the form of a conjugate prior for the Poisson digtion. Hence, if this prior
were used the®’ = B+ By anda’ = a+ 1. Itis also interesting to note that, for this
prior, the expected value foris given by

17/0.00 I/P(V|Bl) :B1+1 (28)



Substituting equation (23) into equation (11) and simpifyyields

LSS () (6 s e L) B
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(29)

With the adoption of uniform priors foP (us) andP(ugr ), the above equation may be
simplified to

r C C{< (%) eicma 0

Cu—j Cs—j R’
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For the specific case of conjugate priors for the expectekidgraand counts, equation
(26) may be substituted into the above equation and simglifiggroduce

Cu Cs ) J
T 2D A () () s @)
1 +aly 14 oy (R + 1)7tk+2

et
where
Cy\T(1+ By +Cy —j) (Cs\T(1 + Bs+Cs — k),
Ajk = 1. (32
" ( ) Cy!By! k Cs'Bg! (J+Ek+1)L (32)

5 A Maximum-Likelihood Estimate

Let \y = pg + agvy denote the expected number of counts in the hard-band source
region. A maximume-likelihood estimate of this quantity(is the observed number of
counts in the region. Similarly, the maximume-likelihoodieste ofvy is By. Then

it follows that a maximum-likelihood estimate &f(..;;|Cr, Byr) is given by

CH*O(HBH

— Hu —KH
P(,LLH|CHvBH) 1—\(1 +Cy — OéHBH)e ) (33)

where the gamma function has been used instead of the facsinceCy — aBgy
is not necessarily an integer. Inserting this expressiahthe analogous one for the
soft-band into equation (11) and integrating yields

I'2+Cy — agBy + Cs — agBg)
I'l14+ Cy — agBp)T'(14+ Cs — asBs)
1 RCH_OCHBH

X F(R) (R 5 1)0n—anbut0s—asbor?’

P(H) =
(34)
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Another way of seeing this is to look for the dominant term gfiation (31), which is
the term that contributes the largest contribution to thegrated probability. To this
end, assum@{ = f(R) = R and integrate equation (31) ovArto obtain

> AL(L+By +Cn—j), anm CHJ]
dR P(R
/o [Z L(1+Cu —3j) (1+0‘}1)
. (35)
X{ZSF(quB’SJrC’Sk)( as )csk]
o F(l +Cs — k) 1+ 0‘%
Let theT'(5) denote theith term in the sum ovey, i.e.,

.~ I'l+By+Cu—3j), « Cr—j

7(j) = N B 2 Cn ) i yeuy, (36)

I'(1+Cyx —3j)

and regard it as a continuous functionjof This function will take on its maximum
value whery satisfies @'/dj = 0. By assuming the asymptotic form

14+ oy

logT(1+z) ~ xlogx — x, (37)
it easily follows that

(CH — OzHBl )+CH(QH — aH)
14 (oy — )

J= (38)
Since this equation was derived assuming the asymptotic & (z), it is expected
to hold whenCy — j is sufficiently large. Recall that for a uniform priety = o/,
andBy = B}, and as aresult = Cy — agBy. Hence, the maximum likelihood
estimate given by equation (34) corresponds to the domirant of the Bayesian
result. Similarly, for the background prior correspondiagquation (27) withv/;; =
ayg +1and By = By + Bi, one obtaing = Cy — ag(Bg + B1)/2, whose
interpretation is also consistent with the maximume-likebhd result with By + By ) /2
viewed as an improved estimate of the background.

6 Conclusion

Equation (31) is the main result of this work. It assumesamif priorgfor the ex-
pected source counts in the hard and soft bands, but allowysgate priors to be used
for the expected background counts. The equation desgrthcase involving uni-
form priors for the background counts may be obtained by kimipping the primes
from equation (31). As it describes the probability funotfor hardness ratio defined
by an arbitrary function of (R), it should be regarded as an extension of the work by
[Park et al.(2006)].

2This restriction is easily lifted by assuming conjugatesifor the expected source counts. This minor
complication would manifest itself as additional primedhgtities of an equation resembling equation (31).
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