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1 Introduction

Hardness ratios are often used in situations where there maynot be enough counts or
spectral resolution to model the spectrum of a source using the traditional forward-
folding[Davis(2001)] methodology. In such a case, a statistic formed from the ratio of
the counts in one band to another band can serve as a crude characterization of the spec-
trum. In the low counts regime where this technique might be used, this statistic suf-
fers from significant statistical fluctuations forcing one to consider its confidence lim-
its derived from the statistics underlying probability distribution. The computation of
confidence limits for hardness ratios has been addressed by others ([Park et al.(2006),
Jin et al.(2006)]) using Bayesian techniques. The present work presents a simple ex-
tension of the work by previous authors to a more general class of functions. Although
a Bayesian approach was adopted no prior knowledge of Bayesian statistics is assumed
on the part of the reader.

2 Definitions

Let CH denote the number of counts in a “hard” energy band extractedfrom a spatial
regionΩs, and letCS denote the counts extracted from a “soft” band. It is assumed
that the bands are non-overlapping and that the same extraction regionΩs was used
for both bands. The counts in each of these bands will consistof both source counts
and background counts. LetµH denote the expected number1of source counts in the

1The “expected number” is a statistical quantity whose valueis not restricted to integers. More precisely,
it refers to the expectation value of the of the number of counts with respect to their underlying probability
distribution.
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hard band for this region. The expected number of hard-band background counts in the
region may be estimated from the number of counts extracted from a source-free region
Ωb. Let νH denote the expected number of counts in the hard-band of the source-free
region, and letαH be a scaling factor such that the expected number of hard-band
background counts in the source region isαHνH . Hence,µH + ανH is the expected
number of counts in the regionΩs for the hard-band. Analogous quantitiesµS , νS , and
αS , may be defined for the soft-band. In the following, the scalefactorsαH andαS

are assumed to be specified constants, and may be thought of asthe ratio of the source
to background effective areas for the corresponding bands.

Following [Park et al.(2006)], the so-called “hardness ratio” R is defined by

R =
µH

µS

. (1)

In addition toR, [Park et al.(2006)] considered two other functional formsof R: the
fractional difference

R− 1

R+ 1
(2)

and the so-called “color” given bylog10(R). In the present work, an arbitrary mono-
tonic function ofR is considered, i.e.,

H = f(R). (3)

Such a more generic form will allow a hardness-ratio of the form

H =
µH/aH − µS/aS
µH/aH + µS/aS

=
(aS/aH)R− 1

(aS/aH)R+ 1
,

(4)

where, e.g.,aS represents the average effective area for the soft-band andµS/aS is
representative of the flux in the band.

Given theobserved countsCH , BH , CS , andBS , the goal is to derive a probability
distribution forH, and from that its confidence limits may be obtained.

3 Bayes Theorem

Assuming that the source and background counts are Poisson distributed, the probabil-
ity P(C|µ) of obtainingC counts whenµ are expected is given by

P(C|µ) =
µC

C!
e−µ. (5)
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Note that the observed number of countsC is integer-valued, whereas the expected
numberµ is a real-valued quantity. The probabilityP(C|µ) should not be interpreted
as the probability density for the expected number of countsµ given the observed
numberC. The latter quantity is denoted asP(µ|C), and may be found as follows:
The joint probability for obtaining exactlyC countsand for the expected number of
counts to lie betweenµ andµ + dµ is denoted asP(µ,C)dµ. It is related to the
conditional probabilities via

P(µ,C) = P(µ|C)P(C) = P(C|µ)P(µ). (6)

From the above it follows that

P(µ|C) =
P(C|µ)P(µ)

P(C)
∝ P(C|µ)P(µ), (7)

which is known as Bayes’ Theorem. By itself, it is not terribly useful without speci-
fying a value forP(µ). Note thatP(µ) is related to the joint probability distribution
via

P(µ) =
∑

C

P(µ,C). (8)

This is also an empty statement without knowing anything about the joint distribu-
tion. Hence, methodologies utilizing Bayes’s Theorem require some prior knowledge
of P(µ), and for this reason statisticians calls refer toP(µ) as simply theprior. For
now,P(µ) will simply be regarded as a function to be specified later.

4 Probability Distribution for the Hardness Ratio

The probability density forH given the observed counts is given by

P(H) =

∫

∞

0

dµH

∫

∞

0

dµS P(µH |CH , BH)P(µS |CS , BS)δ(H − f(
µH

µS

)) (9)

Note that the delta function constrains the ratioµH/µS to a fixed valueR satisfying
H = f(R). Sincef(R) is assumed to be monotonic, the delta function may be written
in the form

δ(H− f(
µH

µS

)) =
δ(µH − µ0

H)

|∂f/∂µH|
, (10)

whereµ0
H = µSf

−1(H) = RµS and∂f/∂µH = f ′(R)/µS . Substituting this expres-
sion for the delta function into equation (9) and integrating overµH yields

P(H) =
1

f ′(R)

∫

∞

0

dµS µSP(RµS|CH , BH)P(µS |CS , BS). (11)

The probabilitiesP(µH |CH , BH) andP(µS |CS , BS) may be obtained as follows. For
clarity, consider one of the bands, say the soft band, and drop the subscript denoting
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the band. Then the joint probabilityP(µ, ν, C,B) may be factored as both

P(µ, ν, C,B) = P(µ, ν|C,B)P(C,B) (12)

and
P(µ, ν, C,B) = P(C|µ, ν,B)P(µ, ν,B). (13)

The fact thatB andC were extracted from independent regions, means that the value
of C cannot depend uponB, nor can the expected number of source countsµ depend
uponB. Hence,

P (C|µ, ν,B) = P(C|µ, ν) (14)

and

P(µ, ν,B) = P(µ)P(ν,B)

= P(µ)P(B|ν)P(ν)
(15)

From these expressions it follows that

P(µ, ν|C,B) =
P(C|µ, ν)P(B|ν)P(µ)P(ν)

P(C)P(B)
, (16)

and

P(µ|C,B) =

∫

∞

0

dνP (µ, ν|C,B)

∝ P(µ)

∫

∞

0

dν P(C|µ, ν)P(B|ν)P(ν),

(17)

where the proportionality constant depends uponC andB, and may be obtained by
demanding thatP(µ|C,B) is normalized according to

1 =

∫

∞

0

dµ P(µ|C,B). (18)

From the assumption of Poisson statistics,

P(C|µ, ν) =
(µ+ αν)C

C!
e−(µ+αν), (19)

and

P(B|ν) =
νB

B!
e−ν . (20)

From these expressions, it follows that

P(µ|C,B) ∝
P(µ)e−µ

C!B!

∫

∞

0

dν P(ν)(µ + αν)CνBe−(α+1)ν

∝
µC

C!
e−µP(µ)

C
∑

j=0

(

C

j

)

(α

µ

)j 1

B!

∫

∞

0

dν P(ν)νB+je−(α+1)ν ,

(21)
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where
(

C

j

)

=
C!

j!(C − j)!
(22)

denotes the binomial coefficient. The above may be expressedin a slightly simpler
form as

P(µ|C,B) ∝ P(µ)
µC

C!
e−µ

C
∑

j=0

(

C

j

)

(α

µ

)j Ij(B,α)

B!
, (23)

where

Ij(B,α) =

∫

∞

0

dν P(ν)νB+je−(α+1)ν . (24)

In order to computeIj(B,α), the probability distributionP(ν) must be specified. In
the absence of any prior knowledge of this function, the so-calleduniform prior, which
assumes thatP(ν) is independent ofν is usually adopted. This choice produces

Ij(B,α) =
(B + j)!

(1 + α)B+j+1
(uniform prior). (25)

Alternatively, a specific parameterization ofP(ν) such asνme−λν could be used. The
use of this particular form has the effect of shiftingB to B′ = B +m, andα to α′ =
α+λ. This parameterization ofP(ν) also has the property that sinceP(B|ν) is Poisson
distributed, thenP(ν|B) computed via equation (7) also has the same functional form
asP(ν). Statisticians use the termconjugate prior for parameterizations that have this
property. Hence,

Ij(B,α) =
Γ(B′ + j + 1)

(1 + α′)B′+j+1
(conjugate prior). (26)

As an example of the a conjugate prior, suppose that an independent measurement of
the Poisson-distributed background yieldedB1 counts. Using this measurement and
Bayes’s Theorem with a uniform prior, it is easy to show that

P(ν|B1) =
νB1

B1!
e−ν, (27)

which has the form of a conjugate prior for the Poisson distribution. Hence, if this prior
were used thenB′ = B+B1 andα′ = α+1. It is also interesting to note that, for this
prior, the expected value forν is given by

ν̄ =

∫

∞

0

νP(ν|B1) = B1 + 1 (28)

5



Substituting equation (23) into equation (11) and simplifying yields

P(H) ∝
1

f ′(R)

CH
∑

j=0

CS
∑

k=0

{(

CH

j

)(

CS

k

)

αj
Hαk

S

CH !CS !
RCH−j Ij(BH , αH)

BH !

Ik(BS , αS)

BS !

×

∫

∞

0

dµS P(µS)P(RµS)µ
CH+CS+1−j−k
S e−µS(R+1)

}

(29)

With the adoption of uniform priors forP(µS) andP(µH), the above equation may be
simplified to

P(H) ∝
1

f ′(R)

CH
∑

j=0

CS
∑

k=0

{(

CH

j

)(

CS

k

)

(j + k + 1)!

CH !CS !BH !BS !

× ICH−j(BH , αH)ICS−k(BS , αS)α
CH−j
H αCS−j

S

Rj

(R+ 1)j+k+2

}

(30)

For the specific case of conjugate priors for the expected background counts, equation
(26) may be substituted into the above equation and simplified to produce

P(H) ∝
1

f ′(R)

CH
∑

j=0

CS
∑

k=0

Ajk(
αH

1 + α′

H

)CH−j(
αS

1 + α′

S

)CS−k Rj

(R + 1)j+k+2
, (31)

where

Ajk =

(

CH

j

)

Γ(1 +B′

H + CH − j)

CH !BH !

(

CS

k

)

Γ(1 +B′

S + CS − k)

CS !BS !
(j+k+1)!. (32)

5 A Maximum-Likelihood Estimate

Let λH = µH + αHνH denote the expected number of counts in the hard-band source
region. A maximum-likelihood estimate of this quantity isC, the observed number of
counts in the region. Similarly, the maximum-likelihood estimate ofνH is BH . Then
it follows that a maximum-likelihood estimate ofP(µH |CH , BH) is given by

P (µH |CH , BH) =
µCH−αHBH

H

Γ(1 + CH − αHBH)
e−µH , (33)

where the gamma function has been used instead of the factorial sinceCH − αBH

is not necessarily an integer. Inserting this expression and the analogous one for the
soft-band into equation (11) and integrating yields

P(H) =
Γ(2 + CH − αHBH + CS − αSBS)

Γ(1 + CH − αHBH)Γ(1 + CS − αSBS)

×
1

f ′(R)

RCH−αHBH

(R+ 1)CH−αHBH+CS−αSBS+2
.

(34)
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Another way of seeing this is to look for the dominant term of equation (31), which is
the term that contributes the largest contribution to the integrated probability. To this
end, assumeH = f(R) = R and integrate equation (31) overR to obtain

∫

∞

0

dR P(R) ∝

[ CH
∑

j=0

Γ(1 +B′

H + CH − j)

Γ(1 + CH − j)

( αH

1 + α′

H

)CH−j

]

×

[ CS
∑

k=0

Γ(1 +B′

S + CS − k)

Γ(1 + CS − k)

( αS

1 + α′

S

)CS−k

]

.

(35)

Let theT (j) denote thejth term in the sum overj, i.e.,

T (j) =
Γ(1 +B′

H + CH − j)

Γ(1 + CH − j)

( αH

1 + α′

H

)CH−j
, (36)

and regard it as a continuous function ofj. This function will take on its maximum
value whenj satisfies dT/dj = 0. By assuming the asymptotic form

log Γ(1 + x) ∼ x log x− x, (37)

it easily follows that

j =
(CH − αHB′

H) + CH(α′

H − αH)

1 + (α′

H − α)
. (38)

Since this equation was derived assuming the asymptotic form of Γ(x), it is expected
to hold whenCH − j is sufficiently large. Recall that for a uniform prior,αH = α′

H

andBH = B′

H , and as a resultj = CH − αHBH . Hence, the maximum likelihood
estimate given by equation (34) corresponds to the dominantterm of the Bayesian
result. Similarly, for the background prior correspondingto equation (27) withα′

H =
αH + 1 andB′

H = BH + B1, one obtainsj = CH − αH(BH + B1)/2, whose
interpretation is also consistent with the maximum-likelihood result with(BH+B1)/2
viewed as an improved estimate of the background.

6 Conclusion

Equation (31) is the main result of this work. It assumes uniform priors2for the ex-
pected source counts in the hard and soft bands, but allows conjugate priors to be used
for the expected background counts. The equation describing the case involving uni-
form priors for the background counts may be obtained by simply dropping the primes
from equation (31). As it describes the probability function for hardness ratio defined
by an arbitrary function off(R), it should be regarded as an extension of the work by
[Park et al.(2006)].

2This restriction is easily lifted by assuming conjugate priors for the expected source counts. This minor
complication would manifest itself as additional primed quantities of an equation resembling equation (31).
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